What Factors Affect the Intention of Using Islamic Mobile Apps? An Analysis Using the UTAUT-2 Model

Main Article Content

Ivan Alviyana
Lina Setiawati


Mobile apps, Islamic M-Productivity, Using intention, UTAUT-2


The use of Islamic applications in the current digital era has grown rapidly since users can access anything and everything with just a few clicks. The market potential of M-Productivity applications in Indonesia is large since this country possesses the largest Muslim population in the world with more than 200 million Islam believers. However, this chance seems to be neglected by application developers in Indonesia. This study attempts to investigate the factors that influence consumer intentions to use Islamic M-Productivity applications by employing the UTAUT 2 model as the research model. A self-administered questionnaire was distributed, and 320 valid responses were generated from Muslim users who have or are currently using Islamic M-Productivity applications. PLS-SEM was applied as a data analysis technique to examine the hypotheses of this study. The results explain that performance expectancy and habit significantly influence a person's intention to access Islamic M-Productivity applications. In addition, this study theoretically enriches the literature on consumer intentions to use Islamic mobile applications and their factors.


Download data is not yet available.
Abstract 92 | pdf Downloads 52


Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453–474. doi: 10.1016/0022-1031(86)90045-4
Al-Adwan, A. S., & Sammour, \G. (2020). What Makes Consumers Purchase Mobile Apps: Evidence from Jordan. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 562–583. doi: 10.3390/jtaer16030034
Ameri, A., Khajouei, R., Ameri, A., & Jahani, Y. (2020). Acceptance of a mobile-based educational application (LabSafety) by pharmacy students: An application of the UTAUT2 model. Education and Information Technologies, 25(1), 419–435. doi: 10.1007/s10639-019-09965-5
Azfar, A., Choo, K.-K. R., & Liu, L. (2016). Android mobile VoIP apps: A survey and examination of their security and privacy. Electronic Commerce Research, 16(1), 73–111. doi: 10.1007/s10660-015-9208-1
Bertschek, I., & Niebel, T. (2016). Mobile and more productive? Firm-level evidence on the productivity effects of mobile internet use. Telecommunications Policy, 40(9), 888–898. doi: 10.1016/j.telpol.2016.05.007
Brown, S. A., & Venkatesh, V. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29(3), 399–426. doi: 10.2307/25148690
Campbell, H. A. (Ed.). (2012). Digital Religion: Understanding Religious Practice in New Media Worlds. Routledge. doi: 10.4324/9780203084861
Data.ai. (2022). Today’s Top App Downloads. Data.Ai. diakses dari https://www.data.ai/en/apps/ios/top/downloads/indonesia/productivity/ios-phone/
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. doi: 10.2307/249008
Dhiman, D. B. (2021). Impact of Smartphone: A Review on Negative Effects on Students , 18(4), 5710-5718. doi: 10.2139/ssrn.4205892
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of Price, Brand, and Store Information on Buyers’ Product Evaluations. Journal of Marketing Research, 28(3), 307–319. doi: 10.2307/3172866
Fishbein, M., & Ajzen, I. (2011). Predicting and Changing Behavior (1st ed.). Psychology Press. doi: 10.4324/9780203838020
Gwebu, K. L., & Wang, J. (2011). Adoption of Open Source Software: The role of social identification. Decision Support Systems, 51(1), 220–229.doi: 10.1016/j.dss.2010.12.010
Hair, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107–123. doi: 10.1504/IJMDA.2017.087624
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi: 10.1108/EBR-11-2018-0203
Islam, Z., Kim Cheng Low, P., & Hasan, I. (2013). Intention to use advanced mobile phone services (AMPS). Management Decision, 51(4), 824–838. doi.: 10.1108/00251741311326590
Kumar, J. A., & Bervell, B. (2019). Google Classroom for mobile learning in higher education: Modelling the initial perceptions of students. Education and Information Technologies, 24(2), 1793–1817. doi: 1007/s10639-018-09858-z
Malhotra, N. (2010). Riset Pemasaran (Marketing Research)(Edisi 4 Jilid 1). PT. Indeks.
Mansoori, K. A. A., Sarabdeen, J., & Tchantchane, A. L. (2018). Investigating Emirati citizens’ adoption of e-government services in Abu Dhabi using modified UTAUT model. Information Technology & People, 31(2), 455–481. doi: 10.1108/ITP-12-2016-0290
Moorthy, K., Suet Ling, C., Weng Fatt, Y., Mun Yee, C., Ket Yin, E. C., Sin Yee, K., & Kok Wei, L. (2017). Barriers of Mobile Commerce Adoption Intention: Perceptions of Generation X in Malaysia. Journal of Theoretical and Applied Electronic Commerce Research, 12(2), 37–53. doi: 10.4067/S0718-18762017000200004
Mowen, J., Michael, M., & Yahya, D. K. (2002). Perilaku konsumen / John C, Mowen, Michael Minor ; alih bahasa, Dwi Kartini Yahya | OPAC Perpustakaan Nasional RI. https://opac.perpusnas.go.id/DetailOpac.aspx?id=312314
Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2020). Acceptance of mobile phone by university students for their studies: An investigation applying UTAUT2 model. Education and Information Technologies, 25(5), 4139–4155. doi: 10.1007/s10639-020-10157-9
Nikou, S. A., & Economides, A. A. (2019). Factors that influence behavioral intention to use mobile-based assessment: A STEM teachers’ perspective: Teachers’ adoption of mobile-based assessment. British Journal of Educational Technology, 50(2), 587–600. doi: 10.1111/bjet.12609
Onaolapo, S., & Oyewole, O. (2018). Performance Expectancy, Effort Expectancy, and Facilitating Conditions as Factors Influencing Smart Phones Use for Mobile Learning by Postgraduate Students of the University of Ibadan, Nigeria. Interdisciplinary Journal of E-Skills and Lifelong Learning, 14, 095–115. doi: 10.28945/4085
Owusu Kwateng, K., Osei Atiemo, K. A., & Appiah, C. (2018). Acceptance and use of mobile banking: An application of UTAUT2. Journal of Enterprise Information Management, 32(1), 118–151. doi: 10.1108/JEIM-03-2018-0055
Palau-Saumell, R., Forgas, S., Sánchez-García, J., & Robres, E. (2019). User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability, 11(4), 1210. doi: 10.3390/su11041210
Penney, E. K., Agyei, J., Boadi, E. K., Abrokwah, E., & Ofori-Boafo, R. (2021). Understanding Factors That Influence Consumer Intention to Use Mobile Money Services: An Application of UTAUT2 With Perceived Risk and Trust. SAGE Open, 11(3), 21582440211023188. doi: 10.1177/21582440211023188
Pinochet, L. H. C., Tanaka, L. Y., Azevedo, M. C. de, & Lopes, E. L. (2020). INTENTION TO CONTINUE TO USE MOBILE PRODUCTIVITY APPS. Revista Pensamento Contemporâneo em Administração,14(2),49–69. doi: 10.12712/rpca.v14i2.40848
Ramírez-Correa, P., Rondán-Cataluña, F. J., Arenas-Gaitán, J., & Martín-Velicia, F. (2019). Analysing the acceptation of online games in mobile devices: An application of UTAUT2. Journal of Retailing and Consumer Services, 50, 85–93. doi: 10.1016/j.jretconser.2019.04.018
Rashotte, L. (2007). Social Influence. In The Blackwell Encyclopedia of Sociology. John Wiley & Sons, Ltd. doi.: 10.1002/9781405165518.wbeoss154
Raza, S. A., Shah, N., & Ali, M. (2018). Acceptance of mobile banking in Islamic banks: Evidence from modified UTAUT model. Journal of Islamic Marketing, 10(1), 357–376. doi: 10.1108/JIMA-04-2017-0038
Tak, P., & Panwar, S. (2017). Using UTAUT 2 model to predict mobile app based shopping: Evidences from India. Journal of Indian Business Research, 9(3), 248–264. doi: 10.1108/JIBR-11-2016-0132
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125–143. doi: 10.2307/249443
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. doi: 10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology, 36(1), 157-178. doi: 10.2307/41410412